1 /*
2  * copyright (c) 2005-2012 Michael Niedermayer <michaelni@gmx.at>
3  *
4  * This file is part of FFmpeg.
5  *
6  * FFmpeg is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * FFmpeg is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with FFmpeg; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19  */
20 
21 /**
22  * @file
23  * @addtogroup lavu_math
24  * Mathematical utilities for working with timestamp and time base.
25  */
26 
27 module ffmpeg.libavutil.mathematics;
28 
29 import ffmpeg.libavutil.rational;
30 
31 extern (C):
32 import ffmpeg; @nogc nothrow:
33 
34 /* e */
35 
36 /* log_e 2 */
37 
38 /* log_e 10 */
39 
40 enum M_LOG2_10 = 3.32192809488736234787; /* log_2 10 */
41 
42 enum M_PHI = 1.61803398874989484820; /* phi / golden ratio */
43 
44 /* pi */
45 
46 /* pi/2 */
47 
48 /* 1/sqrt(2) */
49 
50 /* sqrt(2) */
51 
52 /**
53  * @addtogroup lavu_math
54  *
55  * @{
56  */
57 
58 /**
59  * Rounding methods.
60  */
61 enum AVRounding
62 {
63     AV_ROUND_ZERO = 0, ///< Round toward zero.
64     AV_ROUND_INF = 1, ///< Round away from zero.
65     AV_ROUND_DOWN = 2, ///< Round toward -infinity.
66     AV_ROUND_UP = 3, ///< Round toward +infinity.
67     AV_ROUND_NEAR_INF = 5, ///< Round to nearest and halfway cases away from zero.
68     /**
69      * Flag telling rescaling functions to pass `INT64_MIN`/`MAX` through
70      * unchanged, avoiding special cases for #AV_NOPTS_VALUE.
71      *
72      * Unlike other values of the enumeration AVRounding, this value is a
73      * bitmask that must be used in conjunction with another value of the
74      * enumeration through a bitwise OR, in order to set behavior for normal
75      * cases.
76      *
77      * @code{.c}
78      * av_rescale_rnd(3, 1, 2, AV_ROUND_UP | AV_ROUND_PASS_MINMAX);
79      * // Rescaling 3:
80      * //     Calculating 3 * 1 / 2
81      * //     3 / 2 is rounded up to 2
82      * //     => 2
83      *
84      * av_rescale_rnd(AV_NOPTS_VALUE, 1, 2, AV_ROUND_UP | AV_ROUND_PASS_MINMAX);
85      * // Rescaling AV_NOPTS_VALUE:
86      * //     AV_NOPTS_VALUE == INT64_MIN
87      * //     AV_NOPTS_VALUE is passed through
88      * //     => AV_NOPTS_VALUE
89      * @endcode
90      */
91     AV_ROUND_PASS_MINMAX = 8192
92 }
93 
94 /**
95  * Compute the greatest common divisor of two integer operands.
96  *
97  * @param a,b Operands
98  * @return GCD of a and b up to sign; if a >= 0 and b >= 0, return value is >= 0;
99  * if a == 0 and b == 0, returns 0.
100  */
101 long av_gcd (long a, long b);
102 
103 /**
104  * Rescale a 64-bit integer with rounding to nearest.
105  *
106  * The operation is mathematically equivalent to `a * b / c`, but writing that
107  * directly can overflow.
108  *
109  * This function is equivalent to av_rescale_rnd() with #AV_ROUND_NEAR_INF.
110  *
111  * @see av_rescale_rnd(), av_rescale_q(), av_rescale_q_rnd()
112  */
113 long av_rescale (long a, long b, long c);
114 
115 /**
116  * Rescale a 64-bit integer with specified rounding.
117  *
118  * The operation is mathematically equivalent to `a * b / c`, but writing that
119  * directly can overflow, and does not support different rounding methods.
120  *
121  * @see av_rescale(), av_rescale_q(), av_rescale_q_rnd()
122  */
123 long av_rescale_rnd (long a, long b, long c, AVRounding rnd);
124 
125 /**
126  * Rescale a 64-bit integer by 2 rational numbers.
127  *
128  * The operation is mathematically equivalent to `a * bq / cq`.
129  *
130  * This function is equivalent to av_rescale_q_rnd() with #AV_ROUND_NEAR_INF.
131  *
132  * @see av_rescale(), av_rescale_rnd(), av_rescale_q_rnd()
133  */
134 long av_rescale_q (long a, AVRational bq, AVRational cq);
135 
136 /**
137  * Rescale a 64-bit integer by 2 rational numbers with specified rounding.
138  *
139  * The operation is mathematically equivalent to `a * bq / cq`.
140  *
141  * @see av_rescale(), av_rescale_rnd(), av_rescale_q()
142  */
143 long av_rescale_q_rnd (long a, AVRational bq, AVRational cq, AVRounding rnd);
144 
145 /**
146  * Compare two timestamps each in its own time base.
147  *
148  * @return One of the following values:
149  *         - -1 if `ts_a` is before `ts_b`
150  *         - 1 if `ts_a` is after `ts_b`
151  *         - 0 if they represent the same position
152  *
153  * @warning
154  * The result of the function is undefined if one of the timestamps is outside
155  * the `int64_t` range when represented in the other's timebase.
156  */
157 int av_compare_ts (long ts_a, AVRational tb_a, long ts_b, AVRational tb_b);
158 
159 /**
160  * Compare the remainders of two integer operands divided by a common divisor.
161  *
162  * In other words, compare the least significant `log2(mod)` bits of integers
163  * `a` and `b`.
164  *
165  * @code{.c}
166  * av_compare_mod(0x11, 0x02, 0x10) < 0 // since 0x11 % 0x10  (0x1) < 0x02 % 0x10  (0x2)
167  * av_compare_mod(0x11, 0x02, 0x20) > 0 // since 0x11 % 0x20 (0x11) > 0x02 % 0x20 (0x02)
168  * @endcode
169  *
170  * @param a,b Operands
171  * @param mod Divisor; must be a power of 2
172  * @return
173  *         - a negative value if `a % mod < b % mod`
174  *         - a positive value if `a % mod > b % mod`
175  *         - zero             if `a % mod == b % mod`
176  */
177 long av_compare_mod (ulong a, ulong b, ulong mod);
178 
179 /**
180  * Rescale a timestamp while preserving known durations.
181  *
182  * This function is designed to be called per audio packet to scale the input
183  * timestamp to a different time base. Compared to a simple av_rescale_q()
184  * call, this function is robust against possible inconsistent frame durations.
185  *
186  * The `last` parameter is a state variable that must be preserved for all
187  * subsequent calls for the same stream. For the first call, `*last` should be
188  * initialized to #AV_NOPTS_VALUE.
189  *
190  * @param[in]     in_tb    Input time base
191  * @param[in]     in_ts    Input timestamp
192  * @param[in]     fs_tb    Duration time base; typically this is finer-grained
193  *                         (greater) than `in_tb` and `out_tb`
194  * @param[in]     duration Duration till the next call to this function (i.e.
195  *                         duration of the current packet/frame)
196  * @param[in,out] last     Pointer to a timestamp expressed in terms of
197  *                         `fs_tb`, acting as a state variable
198  * @param[in]     out_tb   Output timebase
199  * @return        Timestamp expressed in terms of `out_tb`
200  *
201  * @note In the context of this function, "duration" is in term of samples, not
202  *       seconds.
203  */
204 long av_rescale_delta (AVRational in_tb, long in_ts, AVRational fs_tb, int duration, long* last, AVRational out_tb);
205 
206 /**
207  * Add a value to a timestamp.
208  *
209  * This function guarantees that when the same value is repeatly added that
210  * no accumulation of rounding errors occurs.
211  *
212  * @param[in] ts     Input timestamp
213  * @param[in] ts_tb  Input timestamp time base
214  * @param[in] inc    Value to be added
215  * @param[in] inc_tb Time base of `inc`
216  */
217 long av_add_stable (AVRational ts_tb, long ts, AVRational inc_tb, long inc);
218 
219 /**
220  * @}
221  */
222 
223 /* AVUTIL_MATHEMATICS_H */